Augmented Assemblies

Augmented Assemblies

_

Sean Guy, The Different Design

Augmented Assemblies encapsulates series of projects exploring the potentials of mass-customized timber structures made entirely from recycled material scraps and offcuts. The work includes two built case studies exploring these ideas: one for the AA Visiting School Melbourne (July 2019), and the other in the Augmented Assemblies studio at RMIT University (September 2019). The projects aim to create
a more circular construction cycle, whereby the potential to re-use discarded construction materials prolongs the lifespan of a building’s use, rather than the typical linear path leading to high levels of waste and scrap material.

Augmented Assemblies makes use of holographic fabrication methodologies that enable bespoke, hand crafted timber assemblies proposing new structural and material potentials. Mixed reality fabrication techniques remove the problem of recycled scrap materials being odd shapes and sizes, and instead allows for an easily fabricate-able, mass-customized construction system, without the need for any drawings or complex tools and machinery.

The building and construction industry is one of the most inefficient in terms of material disposal, building redundancy and lifecycle turnover, with a toxic tear down, trash and rebuild culture. Typically, the reason scrap material is difficult to reuse is because of the unique and awkward shapes and sizes, especially with modern construction techniques relying so heavily on repeatability and standardization. Use of robotic automation and CNC machinery in architecture and design have attempted to shift the paradigm towards material mass-customization, however these types of equipment are often expensive at face value, un-intuitive in their operation, and inefficient in their file preparation. Augmented Assemblies instead explores mixed reality fabrication and construction of mass-customized parts with the Microsoft HoloLensTM as a low-cost alternative.

The construction was staged in two parts: the first involved the marking, matching and cutting of each mass-customized piece in the structure, and the second involved the in-situ assembly of the overall structure. Using the HoloLens, assistants to the project were able to accurately measure, mark and match the timber pieces against a holographic guide of each individual piece in the digital model without the use of any drawings. These pieces were then fixed together with surprising accuracy using a domino joint system. A holographic digital model of the overall structure was then used as a series of assembly instructions. The tools and methodologies enabled the creation of an intricate and structural mass-customized timber assembly system, made entirely out of scrap offcut timber materials.

Augmented Assembly

_

SeanGuy_ is a computational designer and educator and is the founder of the educational service The DIfferent Design. He completed his Master in Architecture at RMIT University. www.thedifferentdesign.com

Image: Augmented Assemblies Prototype at RMIT University - Photographed by Michael Liu and Xinghang Fu.